8.6. Differential Forms

$$
\text { Paot } I
$$

§ 8.6. Differential forms: on shapes
A. Mativatian: argaurze calculetion of integrals in various
dimensiens so that the dizzing vaniety of integras
8 of versians of the Fundeaveulel
theere in of calculus makes sense.

$$
\begin{aligned}
& \text { C. Erample: On } s=\left(\mathbb{R}^{3}\right) \text { xi, }, \text { coovols, } \\
& \hat{A}^{0}\left(\mathbb{R}^{3}\right)=\frac{c^{\infty}\left(\mathbb{R}^{3}\right)}{\text { syun- } 2}=\text { functias } f(x, y, z)
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } A, B, C \text { are funcosione } \\
& A^{3}\left(\mathbb{R}^{3}\right)=\text { expersious } f d x d y d z
\end{aligned}
$$

or i entations!
Reguirenart 2." the notion of
k-forms as "thrings w thet canbe integrobed aver
ariented k - dimeursiond subshapes

$$
\mathcal{F S}
$$

I shauld take into acceunt the ariextobsy of T.

If T^{-}is T with appesip evienkation then $\frac{S_{\omega}}{}=-S_{0}$.
Conseguences for forms on $T R^{n}$:
Example: Cunsiber $S=\pi R^{2} \leq \pi^{2} x, y 0$
This is a peane: and it has two errientetions:
 π
(1) ca can be deseribed by
 "X before y^{4} : y $\xrightarrow[x]{\stackrel{ }{x} \text { arientacion. }}$
(2) π is "y befarex".

The $1^{\text {sh }}$ arientabian will cerresparto te the basic 2-form dxdy.

The $2^{\prime \prime}$ should cerrespengl to " ${ }^{\prime} y d x^{\prime \prime}$ but:
we have not desinal $d x_{2} d x_{2}$ as a betve 2-form!
This requmes a resinemat of the symber dxaly to. 2x, dy, calleal (extevien) product of 1 ferms,
with the propenties:

- $d x \wedge d y=2 x$ dy relation of new
- dy $\wedge d x=-2 x$ idy lablisyinbl.
since changing the anden of $x_{i} y$ corvespoross geomabrs calley to changing orientations of the plane and thot shoubd reverea the integrals:

$$
\text { Sff } \underline{d y n d x}=3 S f 2 x \wedge d y_{2}
$$

Consegunces:
of our definitious:
(1) k forms on \mathbb{R}^{n} are of the forns

$$
\sum_{i} f_{i<\cdots<i k} d x_{i}, \wedge d x_{i_{2}} \wedge \cdots \wedge d x_{i k}=\omega
$$

tresined

$$
\begin{aligned}
& d x_{v}, d x_{i} \ldots d x_{i k} \\
& \text { (basve } k \text {-forms) }
\end{aligned}
$$

(2) When switching places in medar a uninue appears:

$$
\alpha \times \beta \times \frac{\Sigma}{5}=(-1)^{3 \cdot 5} \alpha, 8 \times B
$$

2-foren 7 fermin 5-p.ens
IIf $B=2 x$ \& $\&=d y$ act $(-1) 1]$
swidd, 7 1-garms wistens thforms oset (-1) T. 5 tinas.
(3) There is an aperalion called (de RMau) al: $A^{k}(S) \rightarrow A^{k-1}(S)$

$$
\begin{aligned}
& \frac{d i f f e r e n t i a l}{\text { dif }} \\
& \begin{array}{l}
A^{\prime}(T R) \longrightarrow A^{\prime}(R) \\
C^{\prime \infty}(R) \\
d f
\end{array}=f^{\prime \prime}(x) d x .
\end{aligned}
$$

The Eug:
Eo. $\int_{\text {pint } p} f=f(p)$

$$
\text { El. } \int_{C} F \cdot d r=\int_{C} \widetilde{P R x+Q d y P R d z}
$$

C a carve in $\mathbb{R}^{3}, F=\langle P, Q, P\rangle$ lateques of vector fors over cunss are just integues at 1 - forms!
E2. $\int_{3} F \cdot d \vec{s}$ have $F=\langle P, Q, R\rangle$

$$
\begin{aligned}
& 3 P P d x d y T Q d y d z+R Q_{x} d z \\
& S \text { dx eds everywhee }
\end{aligned}
$$

lutegres of vector fieles oveur surfacs are resoy
integuals \& 2 -forms!

$$
\begin{aligned}
& d f=\text { ardinary } d i g_{1}=\underbrace{f_{x} d x+f_{y} d_{y}+f l_{2}}_{1-\text { farmi }}
\end{aligned}
$$

of the de Rham drifferenbid
Now Stares thearan on anyS:

$$
S_{S} \omega=S_{S} w
$$

de Rhans difforential k-ferm \uparrow cerved uebien of derivalive in $F T C$ is de Plam o 0
Thursdaes: Final Project!

